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A new listing of the effective rs values for metals 
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Abstract. Using concepts from density functional theory, we provide a list of values for the 
effective free-electron density p m t e r  rs in simple and 3d, 4d and 5d ansirion metals, which 
satisfy a necessary condition appropriate for correctly describing murid state properlies of 
arbilrary defects in these system. As an application, we plot the surface energy y of these 
metals versus the 7. determined. A very clear correlation between y and rr is observed, except 
for the magnetic metals. This list should, therefore, replace the much more nd hoe estimate of 
the I $  values used previously. 

1. Introduction 

Even though considerable progress has been made over the last twenty years in treating 
the full many-body ground state of a highly non-uniform (and sometimes, as a direct 
consequence, strongly correlated) electron fluid us U whole, wide interest does remain in 
separating and defining the response of the 'free' mobile part of the electron fluid using an 
effective r, of a uniform electron gas. This interest remains particularly in systems with low 
symmetry. In view of recent renewed interest in properties of electron fluids in the presence 
of a strong external magnetic field, which immediately reduces the symmetry of the system, 
this concept of an effective r, deserves further consideration. With this in mind, we report a 
unique list of such ri values, which we believe satisfy a necessary condition to appropriately 
describe the ground state properties of the mobile part of the electron fluid in the 3d, 4d 
and 5d series. We also show that our definition makes sense in the case of simple metals. 
These values can therefore serve a useful starting point in such low-symmetry problems. 

In section 2, we describe the model used for calculating rs in a given metal. The 
numerical results are presented and discussed in section 3. Finally, several additional 
observations are made together with our conclusion in the last section. 

2. Method for extracting the rs value in a metal 

The Hamiltonian H of a many-electron system in the second quantized representation is 
[I]: 

+ [ V ( T )  + U(T) ]$"(T)@(T)  

- ~ ' I ) ~ + ( T ) $ ( T ) $ * ( T ' ) ~ ( ( T ' )  
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Figure 1. (a) An FCC unit cell of a metal lattice, ( b )  
lhe same KC unit cell with lhe short range potential 
V,, (designated by the sphere with m X) placed in the 
octahednl site. ( e )  The same unit cell with the same 
V,, where all the metal atoms have been removed and 
replaced by an effective jellium at B densiry defined by 
rs . 

I ,s 
rT 

L------------ . , , , 
I 

I 
I 

where u(1r-7’1) = e’/IT-T‘l, V ( T )  is the periodic part of the external potential and U ( T )  
is  the part of an external potential with arbitrary symmetry, such as vacancies. interstitials, 
dislocations, and cleaved surfaces. The presence of an external magnetic field introduces an 
external gauge field [Z], which further reduces the symmetry of H. Although its perturbation 
on the periodic part of H is a little different (i.e., it breaks the time reversal symmetry [Z]), 
for the purpose of this derivation, it can be assumed to be part of U ( r ) .  

Now H With a general V ( r )  (ignoring the quartic term) produces a spectrum of ‘bound’ 
(or localized) bands and ‘free’ (delocalized) bands, but the quartic term correlates this 
spectrum within the bands and even more importantly between the bands. Therefore, how 
can we provide a necessary condition for the definition (gthere is one) for this free electron 
r,? This difficulty is perhaps best illustrated by an idealized form of (1) (the Anderson 
lattice Hamiltonian) given by [3] 

where the first and second terms are the free and localized contributions independently with 
dispersions 6 k a  and a single bound level E l ,  respectively. The index p runs over the 3d, 
4d or 5d manifold with two spins U and a runs over the conduction band index. The third 
term hybridizes the free band and localized d levels and the fourth term is the Hubbard 
repulsion. These last two terms in (2) make the separation between free electrons and 
localized electrons rigorously impossible. 

We now describe our procedure for generating a unique set of r, values, which we 
believe are far superior (at least for ground state properties) to the existing standard listings 
[4,51. 
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Let us look for example at FCC copper. As a first step (see figure l(a)) we calculate the 
self-consistent band structure density n,(r) throughout the FCC unit cell using the density 
functional theory structure for the exchange and correlation potential uxc. As is well known. 
if this uxc were known exactly (it is not), then this would give rigorously n,(r) for (1). 
Practically, we use a standard augmented plane wave (APW) programme for two-component 
systems, with muffin tin spheres for the copper atoms and empty muffin tin spheres at 
the octahedral sites. As a second step we introduce a periodic test potential V&-) at the 
octahedral site of each FCC unit cell (see figure I@)) with Vsr(r) in each site given by 

for r < ro 

where 0 e A < 1 and 2, = 1 (this choice of Vu@) is discussed below). We again solve 
for a new density n,(r) + A n ( r ) ,  where An(r)  is the change due to Vsr(r). 

0.2 

E c 
U 

0.1 

" 

I 

APWCALCULATIONS 
WITH Cu IONS 

- APW CALCULATIONS 
WITHOUTCU IONS 

0.04 

0.03 

c. 
U 
e 0.02 

0.01 

I 

0 

,(a.".) r (a.".) 

Figure 2. Calculation of the displaced densities due to V,, 
in copper. The solid dots are the displaced densities An(?-) 
when V,, is placed in the copper lattice as illustrated in 
hgure I(b). The solid c w e s  are the displaced densities 
A n ~ ( r )  when L i C  is placed in various jellium backgrounds 
as illustrated in figure I(c). The closest fit (i.e., smallest 
LT) occurs when rs = 2.25. 

Figure 3. AS figure 2, but for niobium. 

Before we turn to the third step we first give a precise definition of rs: it is the density 
parameter of the uniform jellium with density number = ($ri-;)-', which as closely as 
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possible replaces ( l ) ,  when the ground state properties of the virgin lattice ( U ( r )  = 0) are 
perturbed by a finite U(?-). Therefore, as a third step we set V ( r )  = 0 in (1) and leave the 
same periodic structure of the VSr(r)  alone now, in a jellium background (figure l(c)). We 
then solve again for the induced density Ano(r) over a range of rE, and search for the r, 
value for which Ano(r) best reproduced An(?-) (see figure 2 and 3). 

It is obvious that our values of r, satisfy a necessary condition in accordance with the 
above definition of r,. However, this clearly does not imply that other properties, such as 
optical properties, have been properly replaced (or can ever be replaced) by such a concept. 
In fact, it is not even clear to what accuracy ground state properties of a defect of general 
symmetry (e.g., U ( T )  corresponding to a cleaved metal surface of niobium) are represented 
by such an effective r,. Therefore, by a necessary condition, we mean that if there exists 
an r )  valid for a general defect of arbitrary symmetry, it must be given by our procedure. 
Actually there is a little more in this procedure than first meets the eye. Again we write 

F Perrot and M Rnsoll 

n(r) = n, ( r )  + An(r)  

where An( r )  is the density displaced by U ( r )  of ( I )  and n,(r) is the unrelaxed density 
of the perfect metal. Assume next that U ( T )  is spherically symmetric and we scale it to 
hU(r).  Via the Hellman-Feynman theorem, if AnA(r)  is the density displaced by h U ( r ) ,  
then the energy is 

where we use the notation 

According to (4) and ( 5 ) ,  the main task of calculating E is obtaining the quantity An i ( r )  for 
the whole range of 0 < h < I .  In  fact, from (4) (even though the underlying density n,(r) 
is non-spherical) only the spherical component of A n A r )  is required when U ( r )  is spherical. 
Of course the density n,(r) governs A n i ( r )  and leads through our above procedure to the 
appropriate r i .  However, once the appropriate jellium is defined, the calculation of the 
ground state energy follows directly from the jellium model with the effective r,. There is 
an additional contribution from the unrelaxed density nc(r)  (i.e., U . n, in (4)) but that is 
trivial to calculate. In short, there is no ‘non-linear’ coupling between nJr) and Ano(r),  
and the ground state properties of the defected lattice can be calculated using the density 
response entirely within the jellium model with an appropriate r,. If U(r)  has arbitrary 
symmetry, then U(T)  = Km(r)f im(C2)  and, again according to the Hellman-Feynman 
theorem, the ground state energy can be calculated entirely using the density response of 
the jellium to U ( r ) .  

3. Results and discussion 

3.J. Alkali metals 

We first look at the results in table 1 for alkali metals. Our values are r6 = 3.13, 3.68, 4.21, 
4.46 and 5.01 for Li, Na, K, Rb and Cs. These results are different from the ‘standard‘ 
values rso obtained for monovalent metals with a fully delocalized density, which are 
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Table 1. Values af the free elecvon density parameter of metals: upper rows rr determined in 
lhe present work; lower rows, 7: determined from the interstitial density obtained in the KKR 
calculations of [6] (data exist for 2 < 50 only). 

Li Be 
3.13 1.86 
3.07 1.85 

Na 
3.68 
3.67 

K 
4.21 
4.37 

C" 
2.25 
1.95 

Rb 
4.46 
4.68 

Ag 
2.61 
2.23 

CS 
5.01 
- 

Mg 

2.58 
2.78 

Ca 
3.07 
2.96 

zn 
2.49 
2.11 

Sr 
3.34 
3.16 

Cd 
2.91 
2.44 

Ba 
3.24 
- 

AI 
2.42 
2.12 

SC 
2.58 
2.33 

Ga 
2.51 
2.28 

Y 
2.69 
2.44 

In 
2.85 
2.57 

La 
2.89 
- 

7i V Cr Mn Fe CO Ni 
2.23 2.12 2.05 2.04 2.06 2.08 2.14 
2.00 1.80 1.71 1.70 1.71 1.74 1.83 

%I 

2.44 
2.08 

SO 
2.98 
- 

Hf 
2.47 
- 

Nb MO Tc Ru Rh Pd 
2.35 2.23 2.21 2.23 2.29 2.39 
1.91 1.77 1.77 1.79 1.86 2.02 

Sb 
3.33 
- 

Ta W Re Os lr Pt 
2.36 2.27 2.21 2.21 2.26 2.37 
- - - - - - 

Au Hg TI Pb Bi 
2.54 2.90 3.04 3.11 3.48 
- - - - - 

r,O = 3.16, 3.79, 4.65, 5.03 and 5.75 respectively, In each case, r, c rso. This implies 
that the Fermi energy (kF) associated with rs should be 

(6) k:/2m = E F  = k,/2m" 2 

where k ~ o  corresponds to the standard r,O and m* is the band structure effective mass. The 
relation 

kF = k d h '  (7) 

is approximately satisfied with accepted values of m* for Na, K ,  Rb and Cs, but not for Li 
which, with m* 1. should have r, > r s .  In fact, our r, value is not determined by (6), 
but from an adjustment of charge densities. Using linear response for alkali metals, we can 
write that the density profile A a ( r )  is 

where the function f ( x )  is that associated with the Lindhard response function 

f (x)  = f -t [(l - x2)/4x] In [ ( I  t x j / ( l  - x)I 
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Table 2. Classification of the metals according to the accuracy of the fit of An(,) with the 
density Ano(r) displaced in a jellium with an effective r,. 0 is the mean square difference 
between An(r) and Ana(?). (9) in the text. 

1000 c 0.5 0.5 < 1 0 b  c I 1 6 1000 < 5 5 6 1000 

Li Be 

CU Ni, Zn K. Ca. SC, Ti, V. Ga 
Na. Mg, AI 

Cr, Mn, Fe, CO 
Rb. Sr. Zr, MO.  Ru, 
Rh. Ag, Sn. Sb 

Pt. Au. Hg, Pb. Bi 

Tc, Cd 

Ba. Os Cs, La, Hf, W, Re, lr, Ta. TI 

Y, Nb. Pd, lo 

K is a reciprocal lattice vector, Q the atomic volume and V,,(q) the Fourier transform of 
the test potential. The local field correction has been omitted for simplicity in (8). In our 
procedure, we search the best fit of this charge density with the following expression: 

by adjusting k F  (i.e. Rs). Note that there is no effective mass in the latter expression. Thus 
the relation of our rs to kFO and m' is much more involved than (6), and this explains the 
result for Li. 

In table I ,  we also show the rf values computed by Moruzzi et al for Li, Na, K and R b  
from the average electron density in the interstitial region (outside the muffin tin spheres) 
that they obtained in their Korringa-Kohn-Rostoker (KKR) band structure calculations [6 ] .  
We see that, again with an exception for Li, these values are intermediate between ours and 
the 'standard' values r,O. 

3.2. Other merals 

Our rs values for the other simple metals and the 3d, 4d and 5d transition metals are shown 
in table 1. We also report for comparison the r," values of Moruzzi et al. which are published 
for Z c 50 161. The common situation is that the rs obtained using the present procedure 
is larger than the r: obtained from the KKR interstitial average density nOut. This is easily 
explained noting that, except in alkali metals, the d electrons contribute to this density no,, 
because they extend farther than the muffin tin radius, but they do not contribute significantly 
in the metal response to the test potential V,, because they are too rigid. 

In table 2 we show a classification of the metals according to the accuracy of the fit of 
An(r) by the density An&) of the effective jellium, inside the sphere of radius ro = I au 
(in the octahedral site of the metal). The spherical parts of the densities are compared for 
N = 11 values r, of the radius in the sphere, and a mean square relative deviation U is 
calculated: 

The optimum value of r, is the value that minimizes U. The fit is most accurate in lithium 
and copper. It  is rather poor i n  several transition metals and also in beryllium (probably 
due to the band strucrure effects in the metal) and gallium. 
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3.3. Application to the analysis of the surface energy 

It would be interesting to see how the r, values given in table 1 correlate with properties 
involving the response of the metals to a low-symmetry perturbation. Obviously, the 
experimental data associated with such properties must be known for all the metals studied 
here in  order to allow a systematic comparison. The surface energy y is a good candidate for 
this study because a complete list of the experimental values is available [7]. Unfortunately, 
the early work of Lang and Kahn 181 has shown that the jellium model does not reproduce 
the surface energy y of simple metals with r, < 4. Including discrete ionic pseudopotentials 
as alirst-orderperturbation was shown to be crucial for bringing the results into quantitative 
agreement with experiment. This does not mean that the surface electron density An(r)  of 
the jellium is inadequate for treating the surface properties: the discrete nature of the ions 
is necessary only for a correct estimate of the electrostatic energy (the cleavage energy, for 
instance, vanishes in the uniform background model). Thus the jellium approximation may 
still be considered as a valuable approximation for generating the eleclxon density provided 
that the total surface energy properly includes the electrostatic perturbation due to the lattice 
of ions. 

In order to overcome this difficulty of the first-principles approach, which does not 
relate y to rs straightforwardly, we take advantage of the phenomenological model of metal 
surfaces proposed by Kahn and Yaniv [9]. Their analysis relates the surface energy y to 
the reversible cleavage force F ( x )  required to split the metal in two pieces. They show that 

y = a(AC)"* (10) 

where IY is a constant for similar materials, and A and C are force constants. The force F ( x )  
goes at short distances like A x  and, at large distances, like C/x3 (x  is a scaled distance). In 
a simple metal, C is proportional to the plasma frequency up = (4xne2)'/',  so it depends 
on rs only. A is related to the longitudinal phonon frequencies and, as suggested by March 
and Tosi [lo], can be approximated by (aK)-', with a the average interatomic distance and 
K the compressibility. As K is itself strongly correlated to r, (see [6]), one arrives at 

y = ( z * ) - i / 6 r ( r s )  (11) 

valid in a simple metal, with r ( r , )  an unexplicited function of rs. Neglecting the weak 
dependence of y on 2*((2*)1/6 varies from 1 to 1.16 for all the metals of table l ) ,  we will 
see whether y correlates with the effective r, in any metal. Let us also note that, in ( l l ) ,  y 
is an average surface energy since its dependence on the orientation of the cleavage plane 
is not included. 

In figure 4, we display the surface energy of (71 for simple metals as a function of the 
r, determined in the present work. The correlation is obvious, the dispersion with respect to 
the average curve being very small. In figure 5, we give the same curves for the 4d and 5d 
metals. There is no difficulty in determining a curve for each series, and they are very close 
together. Figure 6 shows that, in the case of the 3d series, it is not possible to find a unique 
monotonic curve for all the metals. Instead, when one follows the series for increasing Z ,  
y first increases up to vanadium and then decreases for chromium and manganese; then it 
reincreases up to cobalt along the same path and then decreases again towards the curve 
relating to simple metals, but with a trajectory distinct from that corresponding to the first 
metals of the series, so it is more convenient to speak of a loop rather than of a curve for 
the 3d series. We can also see that the general trend is similar with y plotted, in figure 7,  
versus the rf of Moruzzi, but gives a more open loop. Thus, y seems to correlate more 
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F i y r e  4. The surface e n e r a  versus the effeclive r, of 
lhis work, for simple melals. 

Figure 5. Surface energy of lhe 4d and 5d transition 
metals versus the effective r, of this work: full circles. 
4d series. l e f l  curve; open circles, 5d series. right CUNe. 
The dashed curve corresponds 10 simple metals. 

strongly to the present rs than to r:. The surface energy of the 3d metals has been analysed 
recently by Alden et a/ [ I  I]. These authors have calculated y .  using local spin density 
theory and a Green function technique based on the linear muffin tin orbital method, and 
shown that the anomaly for Cr, Mn, Fe and CO is due to a decrease i n  the d contribution 
to y caused by spin polarization [ I  I]. 

4. Conclusions 

We conclude with several more observations. The question may be raised of how sensitive 
the present results are to the form of the test potential used here. This test potential was 
chosen in the form of (3) because if indeed our picture of s and p electrons carrying the 
main response to an external potential with the d electrons remaining largely unpolarized 
is correct, then to extract the s and p response the test potential should neither introduce 
additional charge nor have major overlap with the d levels. VTr(r) in (3) satisfies these 
conditions. The value of rs should not depend on the test potential V&), We tested this 
by changing A in ( 3 )  from A = 1 to A = f and recalculated the case of Cu. The r, value i n  
this material changed from 2.25 when A = 1 to 2.30 when A = f. This adds considerable 
confidence that the concept of an effective rs in these complicated band structures of the 
transition metal series is indeed meaningful. 

In conclusion, we have presented a new list of rs values for simple and transition metals 
based on the concept of the metallic response to external low-symmetry perturbations. These 
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Figure 6. Surface energy of the 3d metals versus the 
effective r, of this work. The mows indicate the 
progression along the path when the atomic number 
increases. The dashed curve corresponds to simple 
metals. 

Figure 7. As figure 6, but with the effective r,’ from 
the KKR calculations of Morurzi el a[ [6]. 

values could serve as a useful starting point in calculating the properties of various defects 
in these materials. 
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